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Abstract. The self-diffusion coefficients of the three components of a salt-free heavy-water
solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide,
were measured over a broad concentration range. Three concentration regions were observed
for the self-diffusion of both the polyions and the counterions. At polyion concentrations below
0.01 mol monomer kg−1, the dilute concentration regime for the polymer, the polyion self-diffusion
coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At
polyelectrolyte concentrations above 0.1 mol monomer kg−1, the self-diffusion coefficients of
the solvent, the counterions and the polymer decreased with concentration, suggesting that this
decrease is due to a topological constraint on the motions of the components. In the inter-
mediate-concentration region, the self-diffusion coefficients of the polyions and the counterions
are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and
high-concentration regions, reasonably well described by that of a hard sphere, with a radius of
3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this
hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost
quantitatively over the entire concentration range with the Poisson–Boltzmann–Smoluchowski
model for the spherical cell, provided that the sphere radius and the number of charges are chosen
appropriately (approximately the number of charges in a persistence length). Using this model, the
dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration
and counterion radius is calculated quantitatively over a large concentration range.

1. Introduction

In previous publications [1, 2] it has been shown that there are three regions in the concentration
profile of the relative counterion self-diffusion coefficient,Dr (Dr = D/D0,D0 = kT /η;
η is the viscosity of the pure solvent). A dilute region was found at polyion concentrations,
cp, lower than 0.01 mol monomer kg−1 (mol kg−1), where the interactions between the
counterions and the polyions vanish andDr approaches the limiting value of unity upon
dilution. At concentrations higher than approximately 0.1 mol kg−1, Dr decreases upon
concentration, because of a topological constraint of the polyion on the counterion dynamics.
In the intermediate-concentration region,Dr is concentration independent and the counterion
dynamics is governed by the electrostatic interactions with the polyions. In theoretical
considerations [3–5] of polyelectrolytes in solution, the existence of different concentration
regimes is presumed. As is the case for counterions, the existence of at least two polyion
concentration regimes has been confirmed experimentally [6, 7].

In this paper the dependence on polyion concentration of the mass transport of the
three constituents of a salt-free polyelectrolyte solution, polyions, counterions and solvent, is
discussed. Measurement of the polyion, counterion and solvent self-diffusion coefficient over a
concentration range which covers as many concentration regions as possible might give insight
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into the mechanisms that govern the dynamic processes in each region. It must be realized
that although the polyion and counterion dynamics are coupled, through the dependence of the
fluxes on each other, the coupling constants are, because of the difference in magnitude of the
polyion and counterion self-diffusion coefficients, very small and a quantitative connection is
almost impossible to obtain. We shall compare the concentration profiles of the self-diffusion
coefficients of the different components only on a qualitative basis.

Here we report a PFG-NMR (pulsed-field-gradient nuclear magnetic resonance) self-
diffusion study on a salt-free solution of completely neutralized polymethacrylic acid (PMA).
A short PMA fragment of only 90 monomers was chosen to measure self-diffusion coefficients
in different polyion concentration regimes. Tetra-methylammonium (TMA+) was chosen as
the counterion, because it has magnetic spin characteristics that are very convenient in a PFG-
NMR experiment. The TMA–PMA was dissolved in deuterium oxide and not in water, because
the1H NMR signal of the abundant water would overlap with both the PMA and TMA+ signals
and thus make the measurement of the self-diffusion coefficients of the individual components
very intricate.

2. Experimental procedure

The sodium salt of PMA (polymethacrylic acid) with a narrow molecular weight distribution
was purchased from Polymer Standard Services. It consisted of a weight-averaged number
(NW) of 89 monomers and a number-averaged number(NN) of 85 monomers. A solution
of the PMA was acidified by addition of an excess of a hydrochloric acid solution (Merck
Titrisol, 0.1 N). Separation of the resulting acidic PMA and sodium chloride together with the
remains of the hydrochloric acid was achieved by repetitive dialysis with freshly deionized
water. The external solvent was, after dialysis, checked against a blank with a carbon analyser
(Ionic Incorporated 1555B) for amounts of carbon larger than the amount of carbon in the
dissolved carbon dioxide, which would be an indication that PMA comes through the pores of
the dialysis bags. No organic carbon was detected. Dialysis was repeated until the conductivity
of the external solvent, after equilibration, equalled that of water (3 ≈ 1 × 10−6 �−1 cm−1,
at room temperature). The acidic PMA was neutralized to a degree of neutralizationα = 1.0
with a solution of tetra-methylammonium hydroxide (TMAOH). Before use, the TMAOH had
been decarboxylated with an anionic exchange resin in the hydroxide form. The acid–base
titration curve of the TMAOH solution showed only one point of equivalence, indicating that
any carbon dioxide had been successfully removed.

Since the chemical shift between water and TMA+ is small(∼2 ppm) and signal overlap
would prevent the measurement of the TMA+ self-diffusion coefficient by means of PFG-NMR,
D2O was chosen as the solvent for the TMA–PMA. To remove the water, the aqueous TMA–
PMA solution was frozen and the solvent was evaporated under a high vacuum. To further
reduce the water content, dry TMA–PMA was dissolved in D2O, frozen and again evaporated
under a high vacuum. This procedure was repeated until the water content of the samples was
smaller than 0.5% and the signals of water and TMA+ could be separated spectroscopically.
Finally, TMA–PMA samples in D2O were prepared over a large polymer concentration range.

Self-diffusion PFG-NMR measurements were carried out using a Bruker AM200 wide-
bore magnet, connected to a Bruker Aspect 3000 spectrometer, at a constant temperature of
25± 0.1 ◦C, kept constant with a gas thermostat. The sample height in the NMR tubes was in
the range 6–8 mm, so the entire sample experienced a homogeneous magnetic field gradient. A
Techron 7570 amplifier, coupled to the spectrometer, supplied practically rectangular gradients
(fromG = 0 toGmax and back within a constant time of about 100µs), of a durationδ of a
few milliseconds. The measurement of the self-diffusion coefficients of PMA and TMA+ was
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carried out at a magnetic field gradient ofG = 0.36 T m−1 A−1 at a maximum current of 20 A,
generated by an actively shielded gradient coil (built at Massey University, Palmerston North,
New Zealand, by the group of Professor P T Callaghan), at a field strength corresponding to
a resonance frequency of 200.132 MHz for the1H nuclei. Because of the inequality of the
longitudinal and transverse relaxation rates, the stimulated spin–echo method [8] was used.
The duration of the gradient pulses was 2 ms for the measurement of the TMA+ self-diffusion
coefficient and 3 ms for PMA. The time between the pulses(1)was 20 ms in both cases. After
each gradient pulse there was a delay of at least 0.1 ms, to allow for the relaxation of possible
eddy currents, prior to the application of the second rf pulse or the signal accumulation.

For the measurement of the D2O self-diffusion coefficient, use was made of a probe (Doty
Scientific, Incorporated), which generated a gradient of 0.4 T m−1 A−1 at a maximum current
of 20 A and a resonance frequency of 30.722 MHz for the2D nuclei. The transverse and
longitudinal relaxation rates were equal, so the conventional spin–echo [9] method was used.
The duration of the gradient pulses and the time between them were 2.5 and 20 ms, respectively.
The amplitude,AG, of the Fourier transform of the acquired signal (not showing any significant
deformation, suggestive of remnant gradients or pulse displacement) is given by

AG = A0x exp

[
−γ 2G2δ2

(
1− δ

3

)
xD

]
(1)

withA0 the echo amplitude at zero gradient,γ the gyromagnetic ratio andD the self-diffusion
coefficient of the specific nucleus.Dwas determined experimentally by varying the magnitude
of the magnetic field gradient. Typically 30 gradient values were used to determine the self-
diffusion coefficient. The values were chosen in such a way thatG2 increased linearly. At the
highest gradient value, the echo attenuation was typically a factor of e+4.

3. Results

In figure 1 the polyion self-diffusion coefficientDp of completely neutralized PMA consisting
of 90 monomers in D2O is plotted as a function of the polyion concentration. Three conc-
entration regions can be distinguished. There are a dilute and a concentrated region (from
monomer concentrationcp ≈ 0.001 to 0.01 mol kg−1 and fromcp ≈ 0.1 to 1 mol kg−1,
respectively), in whichDp decreases upon concentration, and an intermediate-concentration
region, whereDp hardly varies with polyion concentration, but does depend on the ionic
strength and the degree of neutralization [10, 11]. In the low-concentration region,Dp, upon
dilution, approaches the self-diffusion coefficient of a hard rod, with the same dimensions
as the polyion at infinite dilution, assuming the vinylic monomer length to be 1.7 Å (Dp =
1.1 × 10−10 m2 s−1; rod diameter: 5 Å [12]). A shorter monomer length than 2.5 Å, which
had already been suggested by Aver and Alexandrowitz [13] to explain osmotic pressure
measurements on PSS (polystyrene sulphonate) solutions [12], another vinylic polyion with
the same monomer length as fully charged PMA, was found by Kassapidouet al [14] to be
1.7 Å. Although the dimensions of the polyion chains decrease upon concentration in the dilute
region, the polyion self-diffusion coefficient decreases as well. This must reflect the growing
interactions between the chains.

The polyion concentration at the boundary of the dilute and the intermediate-concentration
regions(cp ≈ 0.01 mol kg−1) conforms with the crossover concentrationc∗ between the
dilute and semidilute concentration regimes as predicted by Odijk [3] (c∗ = 0.004 mol l−1

andc∗ = 0.018 mol l−1, with and without the assumption of counterion condensation). The
decrease ofDp around a polyion concentration ofcp ≈ 0.1 mol kg−1 conforms with the
next molecular-weight-independent crossover concentration (c∗∗ ≈ 0.06 mol l−1, without
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Figure 1. The PMA self-diffusion coefficient,Dp, versus the logarithm of the PMA concentration,
log(cp), for salt-free, completely neutralized solutions of PMA consisting of 90 monomers in D2O.
The dashed curve represents the self-diffusion coefficient of a hard sphere(RHS = 3.7 nm) in a
hard-sphere suspension; the dashed–dotted line is the polyion self-diffusion coefficient as calculated
using the electrostatic blob model.

assuming counterion condensation). Comparison with the literature [15–17] reveals, however,
that the decrease ofDp upon concentration in the high-concentration region that is found for
vinylic polymers is dependent on the molecular weight. This would imply that the chains are
not entangled at these concentrations, which is in better agreement with the electrostatic blob
model [5] or with the wormlike-chain model as employed by Kajiet al [18, 19] than with the
Odijk scaling relations [3] that presume the existence of a network at these concentrations.

In analogy with the explanation of the maximum relative counterion self-diffusion
coefficient as a function of polyion concentration, which is a result of the competition
between electrostatic and topological effects [1], the experimental data at intermediate and
high concentrations (fromcp ≈ 0.01 to 1 mol kg−1) can be explained as follows. Although the
dimensions of the chains are decreasing, the electrostatic interactions between the chains get
stronger, giving rise to a constant polyion self-diffusion coefficient over a certain concentration
range. Of course, other explanations are possible. If a lattice-like structure is presumed
[3], the polyion self-diffusion coefficient depends on the reptation time in the lattice. Upon
concentration, the strengths of the electrostatic interactions increase, but the lattice dimension
decreases, which could also give rise to a concentration-independent self-diffusion coefficient.
At higher concentrations, next to the electrostatic interactions, the mutual physical obstruction
of the polyions, together with possible entanglements, become important, resulting in a decay
of Dp upon concentration at concentrations higher thancp ≈ 0.1 mol kg−1.

The diffusion data at intermediate concentrations are reasonably well described by the
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concentration dependence of the self-diffusion coefficient of a hard sphere with a constant
radius(RHS = 3.7 nm) in a hard-sphere suspension, as calculated with a modified molecular
dynamics simulation [20], suggesting a sphere-like conformation of the polyions at these
concentrations(0.01 mol kg−1 < cp < 0.1 mol kg−1). In the intermediate region almost
quantitative agreement was found, while in the concentrated region the polyion diffusive
behaviour is still predicted correctly qualitatively. A polyion in solution is not a hard sphere
and cannot—especially at high concentrations, where the chains overlap—be expected to
act as a hard sphere. It is therefore surprising that a hard-sphere description yields such good
results. Although the end-to-end distance of a polyion in solution is of course not an adjustable
parameter, the hard-sphere radius is in reasonable agreement with experimental findings on
the end-to-end radius of vinylic polyions [18, 21].

Dobrynin et al [5] employ their scaling theory for polyelectrolyte solutions (the blob
model) to explain experimental data for static and dynamic properties of (vinylic) PSS in
solution by adjusting the PSS charge density, or the number of monomers between charges,
to accommodate the data. The best quantitative agreement between the blob model and our
experiments on the concentration dependence of the self-diffusion coefficient of fully charged
PMA in solution is obtained when the number of monomers between charges has the minimum
value of one, resulting in a blob that is not very realistic, with a size smaller than the monomer
size(1.1 Å). Although the blob model correctly predicts the existence of a concentration range
whereDp is concentration independent, albeit with too high a value, the predicted decrease of
the polyion self-diffusion coefficient upon dilution in the dilute concentration regime was not
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Figure 2. The relative solvent self-diffusion coefficient,Dr , versus the logarithm of the PMA
concentration, log(cp), for salt-free, completely neutralized solutions of PMA consisting of 90
monomers in D2O. The dashed–dotted curve represents the calculated obstruction effect of a hard
sphere(RHS = 3.7 nm) on the self-diffusion coefficient of the solvent.
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confirmed by our experiments (figure 1). The quantitative differences between the calculated
polyion self-diffusion coefficient and experiment in the concentration-independent region
diminish if the monomer size is taken as 2.5 Å instead of 1.7 Å, but the qualitative picture
remains inadequate.

In figure 2 the relative self-diffusion coefficient,Dr, of the solvent in the same solution
as above (completely neutralized TMA–PMA consisting of 90 monomers in D2O, without
any additional salt) has been plotted against the logarithm of the polyion concentration. The
relative solvent self-diffusion coefficient starts to decrease strongly with polyion concentration
at polymer concentrations aroundcp ≈ 0.1 mol kg−1; at the same concentration the polyion
self-diffusion coefficient starts to decrease upon concentration. A decrease of the relative
solvent self-diffusion coefficient upon concentration is usually referred to as an obstruction
effect [22]: a shortening of the diffusive path caused by obstructing particles in the solution.
Also displayed in the figure is the obstruction effect of a hard sphere with a radius of 3.7 nm
(equal to that used to calculate the polyion self-diffusion coefficient) on the relative solvent
self-diffusion coefficient as calculated using the PBS model for a spherical cell [23]:

Dr =
(

1 +
1

2
8

)−1

(2)

whereF is the volume fraction of spheres. A fair agreement with experiment is found over the
entire polyion concentration range. It must be noted, however, that an identical concentration
dependence of the solvent self-diffusion coefficient was found for solutions of TMA–PMA of
higher molecular weight [1]. A polyion is not a hard sphere, since both solvent molecules and
counterions can penetrate the polyelectrolyte coil, so it is remarkable that the solvent diffusion
data can be predicted so accurately with a hard-sphere model. Apparently, the solvent is more
hindered by the polyion than would be expected on the basis of the geometrical size of the
polymer alone.

In figure 3(a) the relative self-diffusion coefficient of TMA+ in a salt-free solution of
completely neutralized PMA consisting of approximately 90 monomers in D2O is plotted
against the logarithm of the polyion concentration. (These data have been published previously
[24].) A remarkable resemblance between the concentration dependence of the relative
counterion self-diffusion coefficient,Dr, and that of the polymer self-diffusion coefficient,
Dp, is observed. Three concentration regions can be distinguished, with the same boundary
concentrations as were found for the polymer self-diffusion. A low-concentration region
exists (cp < 0.01 mol kg−1), where the interactions between the counterions and the polyions
gradually disappear upon dilution andDr approaches unity. This increase ofDr upon dilution
in the low-concentration region has also been found, at the same concentration, for solutions
of polyions of higher molecular weight [1, 25, 26], but here, since we know that the polyion
starts to behave as a rod at these concentrations, this must be partially attributed to polyion
end effects on the counterion self-diffusion [27].

There is also an intermediate concentration-independent region(0.01 mol kg−1 < cp <

0.1 mol kg−1) whereDr is governed by electrostatics [2]. In the high-concentration region
(cp > 0.1 mol kg−1) Dr decreases with concentration, as was found for the polyion and the
solvent self-diffusion coefficient, and this is ascribed to the physical obstruction by the polyion.

It has already been pointed out [1] that at intermediate and high polyion concentrations
there is qualitative agreement between experimental counterion self-diffusion coefficients and
those calculated using the PBS model for the cylindrical cell [28, 29]. At PMA concentrations
below 0.01 monomol kg−1 the TMA+ self-diffusion coefficient starts to increase strongly upon
dilution. This increase is not found using the cylindrical PBS model, because of the long range
of the electrostatic potential of an infinitely long charged rod, and depends on both polyion
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Figure 3. (a) The relative TMA+ self-diffusion coefficient,Dr , versus the logarithm of the PMA
concentration, log(cp), for salt-free, completely neutralized solutions of PMA consisting of 90
monomers in D2O. (b) The relative TMA+ self-diffusion coefficient,Dr , corrected for the self-
diffusion coefficient for the solvent, versus the logarithm of the PMA concentration, log(cp), for
salt-free, completely neutralized solutions of PMA consisting of 90 monomers in D2O. The dashed–
dotted curve represents the relative counterion self-diffusion coefficient calculated using the PBS
model for spherical symmetry(Rs = 1 nm, Nq = 20).
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end effects and the persistence length [24].
From the ionic and polyelectrolyte concentration dependences of the polyion persistence

length for vinylic polyions, which can be extracted from neutron scattering data, an expression
for the persistence length in terms of the Debye length can be derived (in nanometres [14, 19,
30–32]):

Lp = 102/3κ−2/3 nm (3)

in which the Debye screening length,κ−1, is defined by

κ2 = [e2/(ε0εrkT )]
∑

niz
2
i

wheree is the protonic charge,ε0 andεr are the permittivity of the vacuum and the relative
permittivity, respectively,k is the Boltzmann constant,T is the absolute temperature, andni
andzi are the number concentration and the valence of the small ionsi in the solution. The
ratio of the experimentally obtained persistence length and the Debye screening length is a
decaying function of the polyion concentration. Accordingly, the assumption of cylindrical
symmetry of the polyion becomes less accurate upon dilution, since the Debye atmosphere
expands at a faster rate than the polyion stiffens.

Therefore the assumption that the polyion electric field, as experienced by the counterions,
can be represented by the electric field of a charged sphere will be tested and the counterion
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Figure 4. The relative TMA+ self-diffusion coefficient,Dr , corrected for the self-diffusion
coefficient for the solvent, versus the logarithm of the PMA concentration, log(cp), at a degree
of neutralizationα = 0.8, with added TMACl. The ratio of the number of counterions of the added
salt to the number of counterions of the polyions,Y , is constant over the concentration range.
� : Y ≈ 0; H: Y = 0.33; ◦: Y = 0.67; �: Y = 1.0, together with the calculated values [23]
(Rs = 1 nm, Nq = 18).
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self-diffusion coefficient will be calculated using the PBS model for a spherical cell [23]. A
brief outline of the model is given in the appendix.

In the PBS model the solvent is treated as an unperturbed dielectric, although it was
observed that the solvent self-diffusion coefficient depends on the polyion concentration (fig-
ure 2). If the experimental counterion self-diffusion coefficient is corrected for the self-
diffusion coefficient of the solvent at that concentration (by simply dividing the relative
counterion self-diffusion coefficient by the relative solvent self-diffusion coefficient), quant-
itative agreement of the PBS model for the spherical cell with experiment is found over a large
range and qualitative agreement over the entire polyion concentration range (figure 3(b)). The
hard-sphere radius,Rs = 1 nm, and the number of charges on the sphere,Nq = 20, were
chosen to accommodate the data, but at a surface charge density approximately equal to that
chosen for the cylindrical case [2]. Note thatNq is of the order of the number of charges in a
persistence length,Lp. After correction for the solvent self-diffusion coefficient, the maximum
relative counterion self-diffusion coefficient is found at higher polyion concentrations. The
maximum arises due to the combination of the effects of physical obstruction and electrostatic
disturbance on the counterion dynamics [1]. The solvent apparently acts as an additional
obstruction to the motion of the counterions.

In figures 4 and 5 we present some previously published data [1, 2], which we discuss here
in terms of the PBS model for the spherical cell. In figure 4 the relative TMA+ self-diffusion
coefficient for solutions of PMA, containing approximately 1000 monomers, at a degree of
neutralizationα = 0.8, has been plotted against the logarithm of the polyion concentration.
The ratio of the number of added salt counterions to the number of polyionic counterions,
Y , has been varied fromY = 0 to Y = 1 and was constant over the concentration range.
The measured self-diffusion coefficients have been corrected for the solvent self-diffusion
coefficients as described above. In order to fit the data to the model, we chose again a hard-
sphere radius,Rs, of 1 nm and a number,Nq , of 18 charges. All of the data can be fitted almost
quantitatively over the entire polyion concentration range. The increase ofDr with the ionic
strength is very well predicted.

In figure 5(a) the self-diffusion coefficients of four TAA+ (tetra-alkylammonium) ions in
solutions of PMA (1000 monomers,α = 0.8) in D2O are plotted against the logarithm of the
polyion concentration (tetra-methylammonium, TMA+, counterion radius [33]:Rc ≈ 3.5 Å;
tetra-ethylammonium, TEA+, Rc ≈ 4.5 Å; tetra-propylammonium, TPA+, Rc ≈ 4.5 Å; tetra-
butylammonium, TBA+, Rc ≈ 5.5 Å). A minimum and a maximum relative counterion
self-diffusion coefficient are observed for each of the four counterions. The value ofDr

is the highest for the largest counterion (TBA+). The maximumDr is found at higher
polyion concentrations for the smaller counterions. At concentrations above the maximum,
Dr decreases with increasing counterion radius, while at polyion concentrations below
the maximum,Dr increases with increasing counterion radius. At the lowest polyion
concentrations (cp ≈ 2×10−3 monomol/(kg solution)) the dependence ofDr on the counterion
radius has disappeared.

In figure 5(b) the calculated relative self-diffusion coefficients for four counterions of
increasing radii in a spherical cell have been plotted as a function of concentration. The
increasing radii of the counterions have been incorporated in the model by increasing the
hard-sphere radius (Rs = 10, 11, 12, 13 Å,Nq = 18). The dependences on the polyion
concentration and on the counterion radius are qualitatively well predicted over the entire
polyion concentration range. Note that the value ofDr at the maximum depends on the
radius as was also observed experimentally. With the PBS model for the cylindrical cell, this
dependence is not found [1]. If the experimental data are corrected for the viscosity of the
solvent, quantitative agreement of the model with experiment is found over a concentration
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Figure 5. (a) The relative self-diffusion coefficient,Dr , of the TAA+ ions in salt-free solutions of
PMA in D2O against the logarithm of the PMA concentration, log(cp). The PMA was neutralized
to a degree of neutralization of 0.8.� : TMA+; H: TEA+; ♦: TPA+; •: TBA+. (b) The relative
self-diffusion coefficient,Dr , as calculated using the PBS model for spherical symmetry (Nq = 18;
full curve: Rs = 1 nm; dashed curve:Rs = 1.1 nm; dashed–dotted curve:Rs = 1.2 nm; dashed–
double-dotted curve:Rs = 1.3 nm). (c) The relative self-diffusion coefficient,Dr , of the TAA+

ions, corrected for the self-diffusion coefficient for the solvent, for salt-free solutions of PMA in
D2O, against the logarithm of the PMA concentration, log(cp). The PMA was neutralized to a
degree of neutralization of 0.8.� : TMA+; H: TEA+; ♦: TPA+; •: TBA+, together with the
calculated values (Nq = 18; full curve:Rs = 1 nm; dashed curve:Rs = 1.1 nm; dashed–dotted
curve:Rs = 1.2 nm; dashed–double-dotted curve:Rs = 1.3 nm).

range fromcp ≈ 0.01 mol kg−1 to cp ≈ 0.2 mol kg−1 (figure 5(c)).
Surprisingly enough, the counterion self-diffusion is much better described by the diffusion

of a point charge around a charged sphere than by that around a charged cylinder. A polyion
is by no means a hard sphere and a polyion solution is most certainly not a dispersion of
non-interacting hard spheres, each containing a fraction of the total polyion charge. However,
the ratio of the persistence length and the Debye screening length for salt-free solutions of
vinylic polyions is of order unity at low polyion concentrations (cp < 0.01 monomol l−1), so
at these concentrations the counterions are not cylindrically symmetrically distributed around
the polyelectrolyte and the electric field experienced by the counterions can apparently be
represented by the electric field of a charged sphere. Due to the flexibility of the vinylic
chain and the interactions of the chain with the solvent, a counterion is on average under the
influence of approximately 20 charges on the chain; the electric field set up by these charges
can be approximated as possessing spherical symmetry.

At high concentrations the persistence length of the polyion is much larger than the Debye
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Figure 5. (Continued)
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screening length, so the assumption that the polyion is cylindrically symmetrical becomes
closer to reality. However, at high polyelectrolyte concentrations the average distance of
the counterions from the polyion is small and the particular choice of the geometry of the
polyelectrolyte is less important for the description of counterion dynamics.

4. Conclusions

A low-, an intermediate- and a high-concentration regime exist for the concentration
dependence of both the relative counterion self-diffusion coefficient and the self-diffusion
coefficient of the polyion. In the low-concentration region,cp < 0.01 mol kg−1, which
coincides with the dilute polyion concentration regime, the polyion self-diffusion coefficient
reaches the limiting value of the freely diffusing rod upon dilution. At concentrations above
cp ≈ 0.1 mol kg−1, the self-diffusion coefficients of the counterion, the polyion and the solvent
decrease upon concentration, reminiscent of a topological constraint on the motions of the
constituents. Since the onset concentration of the decrease ofDp is slightly dependent on the
molecular weight, and chain entanglement is thus unlikely, we propose that the concentration
independence ofDp in the intermediate region is due to the combination of growing electrostatic
interactions between the chains and decreasing chain dimensions. This is supported by the good
description of the polyion self-diffusion coefficient at intermediate and high concentrations,
by the diffusion of a hard sphere(RHS = 3.7 nm) in a hard-sphere suspension, suggesting
a sphere-like conformation of the polyion. The calculated obstruction effect of these hard
spheres on the solvent reproduces the experimental solvent self-diffusion coefficients over the
entire concentration range.

By making an appropriate choice of the sphere radius and the number of charges on the
sphere, but at a surface charge density approximately equal to that used for the cylindrical
model, the relative counterion self-diffusion coefficient calculated using the PBS model for
the spherical cell agrees almost quantitatively with the experimental counterion self-diffusion
coefficient, provided that a correction is made for the solvent viscosity. The number of charges
on the sphere was of the order of the number of charges on a part of the chain about as long as
the persistence length of the chain.

Appendix. The PBS model for the spherical cell [23]

An electro-neutral spherical cell of radiusRcell has one charged hard sphere of radiusRs at
its centre, with a charge density defined by the number of charges,Nq . Immersed in the
dielectric continuum surrounding the charged sphere are the monovalent counterions, with a
charge opposite to that of the sphere, and possible additional electrolyte. The counterions and
the additional electrolyte are treated as point charges. They are distributed in the Poisson–
Boltzmann (PB) potential of the charged sphere in the spherical cell. In terms of the reduced
electrostatic potential(ϕ = eψ/(kT )) the PB equation reads

− 1

r2

d

dr

(
r2 dφ

dr

)
= e2

ε0εrkT

∑
i

nizi exp(−ziφ) (A.1)

wherer denotes the distance from the centre of the spherical cell. On puttingψ → ∞ for
r < Rs the sphere becomes impenetrable for all ions. By adjustment ofRs, the effect of
a counterion radius is introduced. Equation (1) was solved numerically under the boundary
conditionsϕ(Rcell) = 0 andϕ′(Rcell) = 0 (the prime denotes the derivative with respect tor).
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For monovalent counterions an expression for the relative self-diffusion coefficient,Dr,
can be derived by solving the Smoluchowski equation, subject to the PB potential:

Dr = χ(Rcell)
n(Rcell)

navg
. (A.2)

Here, n(Rcell) is the number concentration of counterions at the outer cell boundary,navg

is the average number concentration of counterions in the spherical cell, which is just the
stoichiometric concentration, andχ(Rcell) is determined by the first-order differential equation

rχ ′ + χ(1 +χ − rφ′)− 2 = 0 (A.3)

under the boundary conditionχ(Rs) = 0.
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